DURA‑CPS: A Multi‑Role Orchestrator for Dependability Assurance in LLM‑Enabled Cyber‑Physical Systems
Trisanth Srinivasan, Santosh Patapati, Himani Musku, Idhant Gode, Aditya Arora, Samvit Bhattacharya, Abubakr Nazriev, Sanika Hirave, Zaryab Kanjiani, Srinjoy Ghose
Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce CPS-Guard, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, CPS-Guard continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that CPS-Guard effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.